- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Muñoz, Julian_B (4)
-
Sabti, Nashwan (4)
-
Kamionkowski, Marc (2)
-
Cruz, Hector_Afonso_G (1)
-
Furlanetto, Steven (1)
-
Mirocha, Jordan (1)
-
Mishra-Sharma, Siddharth (1)
-
Sudha, Ram_Purandhar_Reddy (1)
-
Youn, Taewook (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sabti, Nashwan; Sudha, Ram_Purandhar_Reddy; Muñoz, Julian_B; Mishra-Sharma, Siddharth; Youn, Taewook (, Machine Learning: Science and Technology)Abstract Analyses of the cosmic 21-cm signal are hampered by astrophysical foregrounds that are far stronger than the signal itself. These foregrounds, typically confined to a wedge-shaped region in Fourier space, often necessitate the removal of a vast majority of modes, thereby degrading the quality of the data anisotropically. To address this challenge, we introduce a novel deep generative model based on stochastic interpolants to reconstruct the 21-cm data lost to wedge filtering. Our method leverages the non-Gaussian nature of the 21-cm signal to effectively map wedge-filtered 3D lightcones to samples from the conditional distribution of wedge-recovered lightcones. We demonstrate how our method is able to restore spatial information effectively, considering both varying cosmological initial conditions and astrophysics. Furthermore, we discuss a number of future avenues where this approach could be applied in analyses of the 21-cm signal, potentially offering new opportunities to improve our understanding of the Universe during the epochs of cosmic dawn and reionization.more » « less
-
Sabti, Nashwan; Muñoz, Julian_B; Kamionkowski, Marc (, Physical Review Letters)
-
Muñoz, Julian_B; Mirocha, Jordan; Furlanetto, Steven; Sabti, Nashwan (, Monthly Notices of the Royal Astronomical Society: Letters)ABSTRACT The high-redshift galaxy UV luminosity function (UVLF) has become essential for understanding the formation and evolution of the first galaxies. Yet, UVLFs only measure galaxy abundances, giving rise to a degeneracy between the mean galaxy luminosity and its stochasticity. Here, we show that upcoming clustering measurements with the JWST, as well as with Roman, will be able to break this degeneracy, even at redshifts z ≳ 10. First, we demonstrate that current Subaru Hyper Suprime-Cam (HSC) measurements of the galaxy bias at z ∼ 4–6 point to a relatively tight halo-galaxy connection, with low stochasticity. Then, we show that the larger UVLFs observed by JWST at z ≳ 10 can be explained with either a boosted average UV emission or an enhanced stochasticity. These two models, however, predict different galaxy biases, which are potentially distinguishable in JWST and Roman surveys. Galaxy-clustering measurements, therefore, will provide crucial insights into the connection between the first galaxies and their dark-matter haloes, and identify the root cause of the enhanced abundance of z ≳ 10 galaxies revealed with JWST during its first year of operations.more » « less
An official website of the United States government
